Real Time Touch



new TOP 200 Companies filing patents this week

new Companies with the Most Patent Filings (2010+)




Real Time Touch

Similar
Filing Names

Chiyoda Corporation
Chiyoda Corporation_20100128

Chiyoda Corporation patents


Recent patent applications related to Chiyoda Corporation. Chiyoda Corporation is listed as an Agent/Assignee. Note: Chiyoda Corporation may have other listings under different names/spellings. We're not affiliated with Chiyoda Corporation, we're just tracking patents.

ARCHIVE: New 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 | Company Directory "C" | Chiyoda Corporation-related inventors


Gas pressure feed device

Provided is a gas pressure feed device including a compression device for compressing gas supplied from the upstream process and sending the gas to the downstream process, a shut off device provided in the downstream further than the compression device for shutting off the gas heading toward the downstream process, and a recirculation device for recirculate the gas shut off by the shut off device to the upstream of the compression device. The shut off device includes a first port on a primary side for introducing the gas from the compression device, a second port on a secondary side for sending the gas to the downstream process, a third port on the secondary side for sending the gas to the recirculation device, and a switching device for switching the gas heading toward the secondary side to either the second port or the third port.. ... Chiyoda Corporation

Installation method of equipment, inspection method of equipment, inspection method of connection of equipment, supporting structure

A supporting structure that supports a heat exchanger having a saddle is provided. The supporting structure includes a first supporting structure for supporting the saddle along one end thereof and a second supporting structure for supporting the saddle along another end thereof. ... Chiyoda Corporation

Power generation system

A power generation system that has an increased power generation efficiency and can be substituted for a conventional heat exchanging system is provided. A power generation system 1 comprises a power generation module 2 provided with one or more thermoelectric elements 7a, 7b; a heat exchanger 3; a high-temperature fluid passage 4 including a high-temperature fluid inlet 4a and a high-temperature fluid outlet 4b, the high-temperature fluid passage being connected to the power generation module and the heat exchanger both located between the high-temperature fluid inlet and the high-temperature fluid outlet; and a low-temperature fluid passage 5 including a low-temperature fluid inlet 5a and a low-temperature fluid outlet 5b, the low-temperature fluid passage being connected to the power generation module and the heat exchanger both located between the low-temperature fluid inlet and the low-temperature fluid outlet. ... Chiyoda Corporation

Hydrogenation catalyst for aromatic hydrocarbon and hydrotreatment method using the catalyst

A hydrogenation catalyst with a small amount of supported metal that is excellent in stability and inhibition of side reactions is provided. The catalyst hydrogenates an aromatic hydrocarbon compound into an alicyclic hydrocarbon compound, and a group x metal represented by nickel is supported in a composite support including at least alumina and titania. ... Chiyoda Corporation

Equipment safety management device, equipment safety management method, and natural gas liquefaction device

An equipment safety management device for managing safety of equipment capable of holding fluid is provided. The equipment safety management device includes: a safety means configured to be in fluid communication with an outlet of the equipment, the safety means being brought into a released state when pressure of the equipment reaches a previously set pressure, the safety means delivering the fluid to a flare pipe, which is fluidly communicated; and, as the flare pipe, at least one first flare pipe allowing a low-temperature fluid to flow therethrough and at least one second flare pipe allowing an aqueous fluid to flow therethrough. ... Chiyoda Corporation

Natural gas liquefaction system

A natural gas liquefaction system includes a piping rack for supporting a raw material gas transporting pipe for transporting the raw material gas; a pre-cooling heat exchanger for pre-cooling the raw material gas with a first refrigerant; a first refrigerant compressor for compressing the first refrigerant; a plurality of first air-cooled heat exchangers disposed on a top of the piping; a liquefier for liquefying the raw material gas which has been cooled by the pre-cooling heat exchanger, wherein the piping rack has a widened section along a part of a length of the piping rack, wherein the pre-cooling heat exchanger and the first refrigerant compressor are disposed on either side of the widened section of the piping rack, and are connected to each other via a first refrigerant transporting pipe extending in a direction intersecting a lengthwise direction of the piping rack for transporting the first refrigerant.. . ... Chiyoda Corporation

Method for hydrocracking, method for producing hydrocracked oil, hydrocracking device, and device for producing hydrocracked oil

The present invention provides a method for hydrocracking of petroleum heavy oil containing a heavy metal component, comprising a supplying step of supplying a raw material slurry containing the petroleum heavy oil and an iron-based catalyst as well as a hydrogen gas to a hydrocracking reactor; a hydrocracking step of hydrocracking the petroleum heavy oil in the hydrocracking reactor; a recovering step of recovering a residual oil component containing the iron-based catalyst from a product after the hydrocracking step; a disintegrating step of disintegrating the iron-based catalyst of the recovered residual oil component to acquire a disintegrated iron-based catalyst; and a resupplying step of resupplying a processed residual oil component containing the disintegrated iron-based catalyst to the hydrocracking reactor. At the disintegrating step, the iron-based catalyst may be pulverized by a pulverizing machine. ... Chiyoda Corporation

Zeolite catalysts, methods for producing zeolite catalysts, and methods for producing lower olefins

Provided are zeolite catalysts that allow reactions to proceed at temperatures as low as possible when lower olefins are produced from hydrocarbon feedstocks with low boiling points such as light naphtha, make it possible to make propylene yield higher than ethylene yield in the production of lower olefins, and have long lifetime. The zeolite catalysts are used in the production of lower olefins from hydrocarbon feedstocks with low boiling points such as light naphtha. ... Chiyoda Corporation

Composite catalyst, method for producing composite catalyst, method for producing lower olefin and method for regenerating composite catalyst

A lower olefin by using a zeolite catalyst, a composite catalyst capable of further extending the lifetime of catalytic activity, a method for producing the composite catalyst, a method for producing a lower olefin by using the composite catalyst, and a method for regenerating a composite catalyst in the method for producing a lower olefin are provided. The composite catalyst is a catalyst for producing a lower olefin from a hydrocarbon feedstock. ... Chiyoda Corporation

Hydrogenation system for aromatic compound, hydrogen storage and transportation system equipped with same, and process for hydrogenation of aromatic compound

The energy is minimized that is required to lower the concentration of the high boiling point components (containing the poisoning substance for the dehydrogenation catalyst) contained in the hydrogenated aromatic compound produced by the hydrogenation of an aromatic compound. The hydrogenation system (2) for an aromatic compound comprises a hydrogenation reaction unit (11) for adding hydrogen to an aromatic compound by a hydrogenation reaction to produce a hydrogenated aromatic compound, a first separation unit (12) for separating a gas and a liquid component from a product of the hydrogenation reaction unit while maintaining a temperature of the product generally higher than a boiling point of the hydrogenated aromatic compound, and a second separation unit (13) for separating the hydrogenated aromatic compound from the gas component separated by the first separation unit.. ... Chiyoda Corporation

Treatment process of gas containing zero-valent mercury and mercury separation system

A treatment process of a gas containing zero-valent mercury and a mercury separation system, by which the amount of an iodine compound used can be reduced when the zero-valent mercury is separated from the gas containing the zero-valent mercury by using the iodine compound. The process has a step of oxidizing the zero-valent mercury contained in the gas with a first liquid phase containing an alkali metal iodide, thereby obtaining a second liquid phase containing a divalent mercury ion and an iodide ion; a step of separating the divalent mercury ion as mercury sulfide by adjusting the ph of the second liquid phase; and a step of circulating a third liquid phase which is obtained by separating the mercury sulfide in the mercury separation step to use the third liquid phase as the first liquid phase in the mercury oxidation step.. ... Chiyoda Corporation

Plant design assist device and plant design assist program

A plant design device displays a piping diagram of a plurality of control units on a screen according to piping information, wherein the control units have set therein boundary conditions indicating allowable ranges of loads applied to the control units respectively. A control unit that has a boundary condition designated by a user is displayed in the piping diagram on the screen in a visually identifiable manner from the other control units. ... Chiyoda Corporation

System and method for producing hydrogen

Provided is a system and a method which allow hydrogen to be produced both efficiently and in a stable manner when using exhaust gas produced by power generation as a heat source for the dehydrogenation reaction, controlling the temperature of the dehydrogenation reaction within an appropriate range. The system (1) for producing hydrogen comprises a dehydrogenation reaction unit (51) for producing hydrogen from an organic hydride by a dehydrogenation reaction in presence of a dehydrogenation catalyst; a first power generation unit (2) for generating electric power from energy of combustion gas produced by combustion of fuel; a waste heat recovery unit (3) for receiving heat from exhaust gas expelled from the first power generation unit; a heat exchanger (21) provided in the waste heat recovery unit for exchanging heat between the exhaust gas and a heat medium; and a circulation line (l1-l3) for introducing the heat medium heated in the heat exchanger to the dehydrogenation reaction unit in liquid form, and returning the heat medium expelled from the dehydrogenation reaction unit to the heat exchanger; wherein the heat medium is introduced into the dehydrogenation reaction unit at an introduction temperature ranging between 352° c. ... Chiyoda Corporation

System and method for hydrogenating aromatic compound

In a system for hydrogenation of an aromatic compound, an excessive temperature rise in the hydrogenation reaction unit is prevented, and the amount of the dilution gas to be circulated is minimized. The hydrogenation system (1) comprises a hydrogenation reaction unit (2) for producing a hydrogenated aromatic compound by adding hydrogen to an aromatic compound via a hydrogenation reaction, a separation unit (3) for separating the hydrogenated aromatic compound from a product of the hydrogenation reaction unit, and a transportation unit (4) for circulating at least a part of a residual component remaining in the separation unit after separating the hydrogenated aromatic compound therefrom to the hydrogenation reaction unit. ... Chiyoda Corporation

01/19/17 / #20170015553

System and method for producing hydrogen

To allow hydrogen to be supplied to a dehydrogenation reaction unit for dehydrogenating an organic hydride by using a highly simple structure so that the activity of the dehydrogenation catalyst of the dehydrogenation reaction unit is prevented from being rapidly reduced. The hydrogen production system (1) comprises a first dehydrogenation reaction unit (3) for producing hydrogen by a dehydrogenation reaction of an organic hydride in presence of a first catalyst, and a second dehydrogenation reaction unit (4) for receiving a product of the first dehydrogenation reaction unit, and producing hydrogen by a dehydrogenation reaction of the organic hydride remaining in the product in presence of a second catalyst, wherein an amount of the first catalyst used in the first dehydrogenation reaction unit is equal to or less than an amount of the second catalyst used in the second dehydrogenation reaction unit, and an amount of hydrogen produced in the first dehydrogenation reaction unit is less than an amount of hydrogen produced in the second dehydrogenation reaction unit.. ... Chiyoda Corporation








ARCHIVE: New 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009



###

This listing is an abstract for educational and research purposes is only meant as a recent sample of applications filed, not a comprehensive history. Freshpatents.com is not affiliated or associated with Chiyoda Corporation in any way and there may be associated servicemarks. This data is also published to the public by the USPTO and available for free on their website. Note that there may be alternative spellings for Chiyoda Corporation with additional patents listed. Browse our Agent directory for other possible listings. Page by FreshPatents.com

###