Real Time Touch



new TOP 200 Companies filing patents this week

new Companies with the Most Patent Filings (2010+)




Real Time Touch

Desktop Metal Inc patents


Recent patent applications related to Desktop Metal Inc. Desktop Metal Inc is listed as an Agent/Assignee. Note: Desktop Metal Inc may have other listings under different names/spellings. We're not affiliated with Desktop Metal Inc, we're just tracking patents.

ARCHIVE: New 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 | Company Directory "D" | Desktop Metal Inc-related inventors


Fabricating multi-part assemblies

Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.... Desktop Metal Inc

Fabricating an interface layer for removable support

Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent... Desktop Metal Inc

Forming an interface layer for removable support

Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent... Desktop Metal Inc

Fused filament fabrication system configured to fabricate interface layers for breakaway support

A three-dimensional printer uses a fused filament fabrication process to fabricate a net shape object from build materials that can be debound and sintered into a final part. In order to facilitate separation of the object from surrounding support structures, the three-dimensional printer is configured to deposit material between adjacent... Desktop Metal Inc

Method for fabricating an interface layer to separate binder jetted objects from support structures

Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between... Desktop Metal Inc

Removable sinter supports

Additive fabrication systems generally use support structures to expand the available range of features and geometries in fabricated objects. For example, when a vertical shelf or cantilever extends from an object, a supplemental support structure may be required to provide a surface that this feature can be fabricated upon. This... Desktop Metal Inc

Sinterable article with removable support structures

Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent... Desktop Metal Inc

Multi-part removable support structures

Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent... Desktop Metal Inc

System for fabricating an interface layer to separate binder jetted objects from support structures

Binder jetting techniques can be used to deposit and bind metallic particles or the like in a net shape for debinding and sintering into a final part. Where support structures are required to mitigate deformation of the object during the debinding and/or sintering, an interface layer may be formed between... Desktop Metal Inc

Three-dimensional fabrication with locally activated binding of sinterable powders

A powder bed is filled layer by layer with a powdered build material containing an activatable binder. The binder in each new layer is locally activated according to a computerized three-dimensional model of an object to fabricate, layer by layer, a sinterable net shape of the object within the powder... Desktop Metal Inc

Three-dimensional fabrication with locally activated binding of sinterable powders

A powder bed is filled layer by layer with a sinterable powder and a liquid binder. After the liquid binder is applied, the liquid binder can be activated, e.g., by selectively curing cross-sections of the binder according to a computerized three-dimensional model of an object. In this manner, a sinterable... Desktop Metal Inc

Shrinkable support structures

A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the... Desktop Metal Inc

Pneumatic jetting of metal for additive manufacturing

Devices, systems, and methods are directed to the pneumatic ejection of liquid metal from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object through additive manufacturing. The metal is movable into the nozzle as a valve is actuated to control movement of pressurized gas into the... Desktop Metal Inc

Tuning pneumatic jetting of metal for additive manufacturing

Devices, systems, and methods are directed to adjusting a pneumatic circuit associated with pneumatic ejection of liquid metal from a nozzle as the nozzle moves along a controlled three-dimensional pattern to fabricate a three-dimensional object. The adjustment of the pneumatic circuit can facilitate adjusting a pressure profile within the nozzle... Desktop Metal Inc

Sediment controlling in pneumatic jetting of metal for additive manufacturing

Devices, systems, and methods are directed to separating sediment from liquid metal ejected, through pneumatic force, from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object. The separation of the sediment from the liquid metal can reduce the likelihood that the nozzle will become clogged or... Desktop Metal Inc

Selective pneumatic jetting of metal for additive manufacturing

Devices, systems, and methods are directed to switching between pneumatically actuated ejection and electrically actuated ejection of liquid metal from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object. Electrically actuated ejection can be useful, for example, for delivering discrete droplets in areas of the object... Desktop Metal Inc

Spread forming deposition

A printer fabricates an object from a build material based on a computerized model and a fused filament fabrication process. A nozzle for depositing the build material has an interior diameter approaching an outer diameter of build material fed to the nozzle in order to reduce extrusion and resistance forces... Desktop Metal Inc

Energy directors for additive fabrication using semi-solid metallic extrusion

A printer fabricates an object from a computerized model using a fused filament fabrication process and a build material. One or more energy directors such as ridges are formed in an exposed surface of the deposited build material to provide regions of high, localized contact force that can improve interlayer... Desktop Metal Inc

Plasma depassivation

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A plasma depassivation wash is applied during deposition to remove oxidation and improve interlayer bonding between successive layers of the metallic build material. Other techniques such as ultrasonic vibration, formation... Desktop Metal Inc

Monitoring temperature with seebeck effect

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. The Seebeck effect can be employed to monitor a temperature difference between a build material and a nozzle that is extruding the build material based on voltage. The temperature difference... Desktop Metal Inc

Z-axis position detection in additive manufacturing

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. One or more contact probes may be used to detect a height and/or position of a nozzle, e.g., to zero, center, or otherwise calibrate the nozzle prior to a print,... Desktop Metal Inc

Nozzle cleaning for semi-solid deposition nozzles

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A nozzle cleaning fixture may be provided for the printer that is shaped to physically dislodge solidified build material and other contaminants from the nozzle. A robotic system for the... Desktop Metal Inc

Dissolvable bulk metallic glass support materials

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A thermally compatible support structure may be formed to support regions of the object using a dissolvable bulk metallic glass.... Desktop Metal Inc

Build surfaces for semi-solid metallic additive fabrication

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. A build plate that receives the object during fabrication includes a coating of material with a low melt temperature, such as a low melt temperature solder. In particular, the material... Desktop Metal Inc

Semi-solid metallic additive fabrication with temperature control using force feedback

A control loop for extrusion of a metallic build material such as bulk metallic glass measures a force required to extrude the build material, and uses this sensed parameter to estimate a temperature of the build material. The temperature, or a difference between the estimated temperature and a target temperature,... Desktop Metal Inc

Magnetohydrodynamic deposition of metal in manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. The magnetohydrodynamic force can be pulsed to eject droplets of the liquid metal to provide... Desktop Metal Inc

Material interfaces for magnetohydrodynamic metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Nozzles associated with these devices, systems, and methods include a combination of materials suitable for... Desktop Metal Inc

Controlling wetting for magnetohydrodynamic metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Nozzles associated with these devices, systems, and methods include one or more non-wetting surfaces in... Desktop Metal Inc

Controlling quiescent operation of magnetohydrodynamic systems for metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Electric current delivered to a meniscus of the liquid metal in a quiescent state can... Desktop Metal Inc

Magnetohydrodynamic formation of support structures for metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Porosity of one or more predetermined portions of objects fabricated from an accumulation of liquid... Desktop Metal Inc

Magnetic field control for magnetohydrodynamic metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Magnets used to form the magnetohydrodynamic forces are thermally managed to facilitate directing strong magnetic... Desktop Metal Inc

Magnetohydrodynamic deposition rate control for metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. An electric current delivered to produce the magnetohydrodynamic forces can be controlled between a pulsed... Desktop Metal Inc

Material supply for magnetohydrodynamic metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal from a nozzle along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. A feeder system can provide a continuous or substantially continuous supply of... Desktop Metal Inc

Molten material interfaces for magnetohydrodynamic metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal from a nozzle along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Electrodes used to deliver electric current across a firing chamber of the... Desktop Metal Inc

Controlling meniscus position for magnetohydrodynamic metal manufacturing

Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Electric current delivered to a meniscus of the liquid metal in a quiescent state can... Desktop Metal Inc

09/07/17 / #20170252851

Additive manufacturing with metallic composites

A class of metallic composites is described with advantageous bulk properties for additive fabrication. In particular, the composites described herein can be used in fused filament fabrication or any other extrusion or deposition-based three-dimensional printing process.... Desktop Metal Inc

06/29/17 / #20170182560

Removable support structure with an interface formed by crystallization of bulk metallic glass

A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass build material. By heating the bulk metallic glass at an elevated temperature in between an object and adjacent support structures, an interface layer can be interposed between the object and... Desktop Metal Inc

06/22/17 / #20170173692

Metal printer with vibrating ultrasound nozzle

In an aspect, a printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. An ultrasonic vibrator is incorporated into the printer to improve the printing process, e.g., by disrupting a passivation layer on the deposited material to improve interlayer bonding,... Desktop Metal Inc

06/22/17 / #20170173693

Joule heating for improved interlayer bonding in fused filament fabrication of metallic objects

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. Joule heating is applied to an interface between adjacent layers of the object by creating an electrical circuit across the interface and applying pulsed current sufficient to join the metallic... Desktop Metal Inc

06/22/17 / #20170173694

Bulk metallic glass printer with shearing engine in feed path

A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass. A shearing engine within a feed path for the bulk metallic glass actively induces a shearing displacement of the bulk metallic glass to mitigate crystallization, more specifically to extend processing... Desktop Metal Inc

06/22/17 / #20170173695

Additive manufacturing with temporal and spatial tracking of thermal information

A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material such as a bulk metallic glass. A thermal history of the object may be maintained, e.g., on a voxel-by-voxel basis in order to maintain a thermal budget throughout the object... Desktop Metal Inc

06/22/17 / #20170173697

Removable support structure with an interface formed between thermally mismatched bulk metallic glasses

A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass build material. By using thermally mismatched bulk metallic glasses for an object and adjacent support structures, the interface layer between these structures can be melted and crystallized to create a... Desktop Metal Inc

06/22/17 / #20170173877

Layer-forming nozzle exit for fused filament fabrication process

A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a... Desktop Metal Inc

06/22/17 / #20170173878

Fused filament fabrication nozzle with controllable exit shape

A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.... Desktop Metal Inc

06/22/17 / #20170173879

Fused filament fabrication extrusion nozzle with concentric rings

A printer fabricates an object from a computerized model using a fused filament fabrication process. The exit of the nozzle may include a number of concentric rings, where each of which may be selectively opened or closed during extrusion to control extrusion properties such as a volume of extrudate or... Desktop Metal Inc

03/02/17 / #20170056966

Three-dimensional electrohydrodynamic printing of metallic objects

An additive manufacturing system uses electrohydrodynamic (EHD) printing techniques to form a metallic object based upon a digital model. A metal build material is melted within a reservoir and expelled through an outlet of an expeller in a controlled manner using EHD force to modulate surface tension on a meniscus... Desktop Metal Inc

03/02/17 / #20170056967

Control of metallic electrohydrodynamic three-dimensional printing using feedback of surface characteristics

A metallic electrohydrodynamic (EHD) three-dimensional printer fabricates an object while surface characteristics of the object are monitored. Sensors acquire data on surface characteristics, and feedback related to these surface characteristics is used to adjust the fabrication process, e.g., where the surface characteristics deviate from a target surface shape.... Desktop Metal Inc

03/02/17 / #20170056970

Control of a three-dimensional printing process using estimated thermal parameters

Thermal parameters for an additive manufacturing process are estimated using computer modeling, and these thermal parameters are used to control the additive manufacturing process. For example, the thermal parameters may be estimated based on bulk material properties, object geometry, control signals to thermal components of a system, and so forth.... Desktop Metal Inc








ARCHIVE: New 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009



###

This listing is an abstract for educational and research purposes is only meant as a recent sample of applications filed, not a comprehensive history. Freshpatents.com is not affiliated or associated with Desktop Metal Inc in any way and there may be associated servicemarks. This data is also published to the public by the USPTO and available for free on their website. Note that there may be alternative spellings for Desktop Metal Inc with additional patents listed. Browse our Agent directory for other possible listings. Page by FreshPatents.com

###